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Abstract
In this paper, the regime of anticipating synchronization (sometimes called
predicted synchronization) in a class of nonlinear dynamical systems is
investigated by testing the global asymptotical stability of time-delayed error
dynamics. Sufficient conditions in terms of linear matrix inequalities are
established for anticipating synchronization between such systems with and
without state time delay. These results allow one to predict the dynamic
behavior of the systems by using a copy of the same system that performs
as a slave. Moreover, the cascaded anticipating synchronization is concerned
such that several slave systems could anticipate the same master system with
different delays. Concrete applications to phase-locked loops demonstrate the
applicability and validity of the proposed results.

PACS numbers: 05.45.Xt, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ever since the seminal work of Pecora and Carroll [1], there has been considerable interest
in the phenomena of synchronization of complex or chaotic systems [2, 3]. Synchronization
means that two or more systems adjust each other by coupling the systems or by forcing
them, giving rise to common dynamical behavior [4]. The main motivation of synchronization
so far, among others, seems to lie in potential applications regarding secure communications.
Efforts have been made to characterize different types of synchronization in interacting chaotic
systems. Complete synchronization, for example, implies coincidence of states of interacting
systems, y(t) = x(t), for all t larger than some transient time. Lag synchronization appears as
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the occurrence of shifted-in-time states between two systems, namely y(t) = x(t − τ) with a
certain positive constant τ > 0 [5–7]. In contrast to lag synchronization, the peculiar
phenomenon of anticipating synchronization [8, 9] shows that synchronization may possibly
occur between master and time-delayed slave systems, and consequently in this manner the
slave dynamics act as a predictor of the master dynamics in spite of the inherent unpredictability
of chaotic systems and vice versa. The regime of anticipating synchronization, or sometimes
called predicted synchronization, has been demonstrated through analytic and numerical
evidence by considering a system of two coupled Ikeda equations, in a one-way delayed
coupling configuration [8]:

ẋ(t) = −αx(t) − β sin x(t − τ), (1)

ż(t) = −αz(t) − β sin x(t), (2)

where x, z ∈ R and the time delay τ > 0. ė = −αe(t) is the error dynamics of e(t)
�=

z(t − τ) − x(t), and a necessary and sufficient condition for the error e to converge to
0 is that α > 0. Therefore, system (2) synchronizes with the future states of (1) at
time t + τ and hence anticipates the dynamics of (1). This regime has been demonstrated
theoretically and numerically in disparate dynamical systems [10–14]. Experimental results
have considered either electronic circuit implementations of the dynamical equations [15] or
chaotic semiconductor diode lasers [16].

Although its main interest concerns systems whose dynamics has an intrinsic degree of
unpredictability, the surprising result of anticipating synchronization is of general validity.
In this regard, investigation on how anticipating synchronization can be achieved for general
classes of complex or chaotic systems is of considerable interest to researchers. Except for
the examples mentioned above, the anticipating synchronization for chaotic Lur’e systems
has been specifically examined in virtue of the absolute stability theory [17, 18], which
has been extensively studied based on the frequency-domain method and equivalent time-
domain matrix inequality conditions. This kind of paradigm, however, hardly lends itself to
the analysis of nonlinear systems with multiple equilibria. Regarded as a generalization of
mathematical pendulum equations, pendulum-like systems are a typical category of multiple-
equilibria nonlinear systems that have been observed in mechanical and electrical engineering
applications such as synchronous machine and phase-locked loops (PLLs) [19]. Given
appropriate system parameters and initial values, this kind of system could exhibit different
kinds of nonlinear behavior, and sufficient conditions guaranteeing global properties of
pendulum-like systems have been proposed based on both frequency-domain methods [20] and
linear matrix inequality (LMI) [21] approaches in the time domain [22, 23]. As for pendulum-
like systems with state delay, the global asymptotical stability has been examined in [24].
Thus, a natural and interesting question is: does the anticipating synchronization phenomenon
exist between two coupled pendulum-like systems? Another question is: what scheme can be
applied to and how can we determine the realization of this kind of synchronization problem?

Motivated by these considerations, this paper aims at examining the anticipating
synchronization phenomenon in coupled pendulum-like dynamical systems, where one of the
dynamical systems performs as the ‘master system’ while the remaining one acts as the ‘slave’.
Within the coupling setups considered here, which are generalizations of that considered in
[8], coupling terms are acted upon in the slave one in order to synchronize the two systems.
In the following contexts, the determination of anticipating synchronization is converted into
an equivalent stabilizing problem for the error dynamics between master and slave systems,
which is also shown as a standard form of a pendulum-like system. In order to find verifiable
conditions guaranteeing anticipating synchronization, sufficient delay-dependent criteria in
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form of LMIs are derived by employing the Lyapunov–Krasovskii-type functionals. The
solvability of such conditions can be tested through the Matlab LMI Toolbox. Consequently
in this manner, the slave pendulum-like dynamics could act as a predictor of the master
dynamics in spite of the inherent unpredictability of chaotic systems. Moreover, the scheme
is extended to cascaded anticipating synchronization, which provides increased anticipation
times [9], and thus several slave systems could anticipate the same master system at one time.
It is found that the stability properties of the associated anticipatory synchronization manifold
turn out to be the same as for identically synchronizing systems.

The rest of the paper is organized as follows. Preliminaries used are introduced in section 2.
Section 3 presents the master–slave as well as cascaded anticipating synchronization schemes
with criteria presented. Concrete examples showing the effectiveness and applicability of the
proposed conditions have been given in section 4. Section 5 concludes the paper.

2. Preliminaries

Let us start out with the model of nonlinear pendulum-like dynamical system described by the
following differential equations:

ẋ = Ax + Bϕ(y), ẏ = CT x + Dϕ(y), (3)

where A ∈ R
n×n, B,C ∈ R

n×m,D ∈ R
m×m. Suppose that the parameter matrix pair

(A,B) is controllable, (A,CT ) is observable and matrix A is Hurwitzian. The continuously
differentiable vector-valued function ϕ(y) = (ϕ1(y1), . . . , ϕm(xm))T whose component
ϕl(yl) : R → R is Tl-periodic with a finite number of zeros on the interval [0, Tl), l =
1, . . . , m. Also assume that G(0) is nonsingular. The transfer function of the linear part from
the input ϕ(y) to the output −ẏ is given by

G(s) = CT (A − sI )−1B − D.

Since the nonlinear function ϕ(y) is T-periodic, the system possesses multiple isolated
equilibria. The system with form (3) covers a wide class of systems in engineering, mechanics,
electric and electronic circuits, and power systems [19].

Definition 1. The pendulum-like system (3) is globally asymptotically stable if every solution
(x, y) converges to a certain equilibrium (xeq, yeq) as t tends to +∞.

In practical situations, time delays caused by signal transmission affect the behavior of
coupled systems; hence, to study the synchronization schemes between pendulum-like models
with time delay is worth discussing. This study also considers the following system model
with state time delay:

ẋ(t) = Ax(t) + Adx(t − τ) + Bϕ(y(t)), ẏ(t) = CT x(t) + Dϕ(y(t)), (4)

where A ∈ R
n×n, τ ∈ R is a constant time delay and other parameters are defined the same

as in (3). The transfer function of the linear part from the input ϕ(y) to the output −ẏ is
introduced as

G(s) = CT (A + Ah e−hs − sI )−1B − D.

Suppose that G(0) �= 0 and A + Ah has no eigenvalues on the imaginary axis. Similarly, the
pendulum-like model with state delay (4) also possesses multiple equilibria and the global
asymptotical stability could also be depicted by definition 1.
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3. Main results

In this section, we first examine two scenarios including the master–slave anticipation that
generalize the scheme in (1) and (2) between two coupled identical pendulum-like systems
with and without state time delay. Then a more generalized situation of cascaded anticipating
synchronization is taken into account. These proposed approaches would be of significance
to predict the dynamic behavior of pendulum-like systems using a copy of the same system
that performs as a slave.

3.1. Master–slave anticipation

Consider two pendulum-like systems (3) coupled under the master–slave scheme with a master
system subject to a nonlinear time-delay term and a slave one under control:

(M)

{
ẋ(t) = Ax(t) + Bϕ(σ1(t)) + �(σ1(t − τ)),

σ̇1(t) = CT x(t) + Dϕ(σ1(t)),
(5)

(S)

{
ẏ(t) = Ay(t) + Bϕ(σ2(t)) + �(σ1(t)) + u(t),

σ̇2(t) = CT y(t) + Dϕ(σ2(t)),
(6)

where the master and slave systems are pendulum-like systems with state vectors x, y ∈ R
n

and phase vectors σ1, σ2 ∈ R
m, respectively. Constant matrices A,B,C,D as well as the

T-periodic function ϕ : R
m → R

m are defined the same as in (3). � is a nonlinear term such
that solutions of the above systems exist. u(t) is a unidirectionally coupled term, which is
supposed to be in the form of

u(t) = K(y(t − τ) − x(t)),

with a certain positive constant τ > 0 and the coupling matrix K ∈ R
n×n.

By defining the error signals e(t) = x(t) − y(t − τ), ξ(t) = σ1(t) − σ2(t − τ), we obtain
the error dynamics{

ė(t) = Ae(t) + Ke(t − τ) + Bη(ξ(t), σ2(t)),

ξ̇ (t) = CT e(t) + Dη(ξ(t), σ2(t)),
(7)

in which η(ξ(t), σ2(t)) = ϕ(ξ(t) + σ2(t − τ)) − ϕ(σ2(t − τ)).

Definition 2. If the error dynamics (7) is globally asymptotically stable, then the master
system and the slave one are said to achieve anticipating synchronization.

Remark 1. Due to the periodicity of function ϕ(·), nonlinearity η(ξ, σ2) is also a T-periodic
function with respect to ξ , and the error dynamics (7) still possesses a standard form of
pendulum-like system with multiple equilibria. As a consequence, if the error dynamical
system (7) is globally asymptotically stable, then each of its solutions tends to a certain
equilibrium as t → ∞, that is, e(t) → 0, ξ → c. Here, c is a certain constant satisfying
η(c, σ2) = 0, which is determined by the initial conditions ξ(0) and σ2(0). In this regard,
when the master and slave systems achieve anticipating synchronization, the state variables
x(t) → y(t − τ), while the phase variable σ1(t) → σ2(t − τ) + c as t → ∞.

Remark 2. Alternatively one could consider a unidirectionally coupling term u(t) =
K(y(t − τ1) − x(t − τ2)), with τ1 > 0 and τ2 > 0 in (6). Synchronization would be achieved
whenever x(t − τ2) − y(t − τ1) tends to 0 as t tends to ∞. If τ1 = τ2, the synchronization
would be complete; the anticipating (respectively lag) synchronization would be achieved if
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τ1 − τ2 > 0 (respectively τ1 − τ2 < 0). The introduction of such a coupling term is the
approach considered in [25], where techniques similar to ours are used. Nevertheless, their
model is notably different from ours. In [25], if the coupling term u is suppressed then
both systems are identical and uncoupled. Hence, there always exists an invariant manifold
(synchronization manifold) where x(t − τ2) = y(t − τ1). This is not our case and only when
τ1 − τ2 > 0 do we get a synchronization manifold.

The main objective of the synchronization scheme (5) and (6) is to let the slave system
(S) anticipate the dynamics of the master system (M) by adding a coupling term to the slave
system (S), specifically to ensure global asymptotical stability of the error dynamical system
(7) in virtue of an LMI-based approach to the determination of a feedback controller for such
a property.

The following theorem presents a criterion formulated by means of LMI to ensure that
the controlled slave system could anticipate the future behavior of the master system.

Theorem 1. If there are positive definite matrices W > 0, Z > 0, Y > 0, matrices
M,N,P,Q,R, S and diagonal matrices κ, ε > 0, δ > 0 such that the following LMIs
hold:


 =

⎡⎢⎢⎢⎢⎣

11 
12 
13 M − AT NT + W + ST −τ̄P

∗ 
22 
23 −KT NT − ST −τ̄Q

∗ ∗ 
33 −BT NT −τ̄R

∗ ∗ ∗ τ̄Z + He N −τ̄ S

∗ ∗ ∗ ∗ −τ̄Z

⎤⎥⎥⎥⎥⎦ < 0 (8)

[
2ε κν

∗ 2δ

]
> 0, (9)

with


11 = Y + He (P − MA) + CεCT , 
12 = −P + QT − MK,


22 = −He Q − Y, 
13 = 1
2Cκ + RT − MB + CεD,


23 = −RT , 
33 = δ + 1
2 He DT κ + DT εD,

then for any delay τ satisfying 0 < τ � τ̄ , the error dynamics (7) is globally asymptotically
stable, and the master system (M) and the slave one (S) achieve anticipating synchronization.

Proof. See the appendix. �

Remark 3. In virtue of theorem 1, one could easily handle the controller design problem and
further the anticipating synchronization between the two systems. Moreover, several slack
variables M,N,P,Q,R, S are introduced into LMI (8) by employing the Newton–Leibniz
formula. It is thus expected that theorem 1 will be less conservative than some existing results
due to the increasing freedom of these slack variables [26, 27].

Remark 4. When the parameter matrix K of the coupling term is unknown, we could design
an appropriate coupling matrix in order to realize the anticipating synchronization between
the master and slave systems. However, the matrix inequality (8) would become nonlinear
since K acts as a variable. Under this circumstance, we could specify M = αI and N = βI ,
where α and β are numbers to be searched. Then we have the following LMI condition for
the design of K.
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Corollary 1. If there are positive definite matrices W > 0, Z > 0, Y > 0, matrices
P,Q,R, S,K , diagonal matrices κ, ε > 0, δ > 0 and two numbers α, β such that LMI⎡⎢⎢⎢⎢⎣

� −P + QT − αK 1
2Cκ + RT − αB + CεD αI − βAT + W + ST −τ̄P

∗ −He Q − Y −RT −βKT − ST −τ̄Q

∗ ∗ δ + 1
2 He DT κ + DT εD −βBT −τ̄R

∗ ∗ ∗ τ̄Z + 2βI −τ̄ S

∗ ∗ ∗ ∗ −τ̄Z

⎤⎥⎥⎥⎥⎦ < 0

(10)

as well as (9) holds, then for any delay τ satisfying 0 < τ � τ̄ , the master system (M) and
the slave one (S) achieve anticipating synchronization under the derived coupling matrix K,
where � = Y + He(P − αA) + CεCT and α, β are numbers to be searched.

3.2. Anticipating synchronization between systems with state time delay

In what follows, consider a more general case that the master and slave systems are both
nonlinear pendulum-like systems with state time delays as presented in (4):

(M̃)

{
ẋ(t) = Ax(t) + Adx(t − τ) + Bϕ(σ1(t)) + �(σ1(t − τ)),

σ̇1(t) = CT x(t) + Dϕ(σ1(t)),

(̃S)

{
ẏ(t) = Ay(t) + Ady(t − τ) + Bϕ(σ2(t)) + �(σ1(t)) + u(t),

σ̇2(t) = CT y(t) + Dϕ(σ2(t)),

(11)

where Ad ∈ R
n×n, and other parameters are defined the same as in systems (5) and (6). By

introducing the coupling term u(t) = K(y(t − τ) − x(t)), we can derive the error dynamics{
ė(t) = Ae(t) + (Ad + K)e(t − τ) + Bη(ξ, σ2)

ξ̇ (t) = CT e(t) + Dη(ξ, σ2).
(12)

with the error signals e(t) = x(t) − y(t − τ) and ξ(t) = σ1(t) − σ2(t − τ). Nonlinearity
η(ξ, σ2) = ϕ(ξ(t)+σ2(t − τ))−ϕ(σ2(t − τ)) is a periodic function of ξ due to the periodicity
of function ϕ(·); hence, the error dynamics (12) also possesses a standard form of pendulum-
like system. Accordingly, the criterion derived for anticipating synchronization of (5) and (6)
could be directly applied to systems (M̃) and (̃S). Based on the Schur lemma, theorem 1 can
be converted to the following equivalence, whose proof is omitted.

Theorem 2. If there are positive definite matrices W > 0, Z > 0, Y > 0, matrices
M,N,P,Q,R, S and diagonal matrices κ, ε > 0, δ > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 M − AT NT + W + ST −τ̄P Cε

∗ �22 �23 −AT
d NT − KT NT − ST −τ̄Q 0

∗ ∗ �33 −BT NT −τ̄R DT ε

∗ ∗ ∗ τ̄Z + He N −τ̄ S 0
∗ ∗ ∗ ∗ −τ̄Z 0
∗ ∗ ∗ ∗ ∗ −ε

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (13)

and (9) hold, then for any delay τ satisfying 0 < τ � τ̄ , the master system (M̃) and the slave
one (̃S) with state time delay in (11) achieve anticipating synchronization, where

�11 = Y + He(P − MA), �12 = −P + QT − MAd − MK,

�22 = −He Q − Y, �13 = 1
2Cκ + RT − MB,

�23 = −RT , �33 = δ + 1
2 He DT κ.
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3.3. Cascaded anticipation

In this part, we consider the situation when the slave systems in (6) are a chain of l pendulum-
like dynamical systems (Si), i = 1, . . . , l:

(M)

{
ẋ = Ax + Bϕ(σ) + �(σ(t − τ)),

σ̇ = CT x + Dϕ(σ),

(S1)

{
ẏ1 = Ay + Bϕ(σ1) + �(σ(t)) + u1(t),

σ̇1 = CT y1 + Dϕ(σ1),

(S2)

{
ẏ2 = Ay2 + Bϕ(σ2) + �(σ1(t)) + u2(t),

σ̇2 = CT y2 + Dϕ(σ2),

...

(Sl)

{
ẏl = Ayl + Bϕ(σl) + �(σl−1(t)) + ul(t),

σ̇l = CT yl + Dϕ(σl),

(14)

where u1(t) = K(y1(t − τ) − x(t)), u2(t) = K(y2(t − 2τ) − y1(t − τ)), . . . , ul(t) =
K[yl(t − lτ ) − yl−1(t − (l − 1)τ )]. Suppose that the nonlinearity � is T�-periodic, where
T = nT� with integer n > 0. Similar to definition 2, the following definition of cascaded
anticipating synchronization is given in allusion to the l + 1 pendulum-like systems (14).

Definition 3. Systems (14) are said to be cascaded anticipating synchronized, if for
any constant τ > 0, state variables of the master system and l slave systems achieve
x(t) = y1(t − τ) = y2(t − 2τ) = · · · = yl(t − lτ ) as time goes to infinity, while the phase
variables σ(t) = σi(t − iτ) + ci , in which ci = δiT are constants for δi ∈ Z, i = 1, . . . , l.

The idea of applying cascaded synchronization was initially proposed by Voss in the
context of anticipating synchronization between coupled ordinary differential equation systems
[9]. This concept is of significance, in that it provides increased anticipation times for the
anticipating synchronization phenomenon. Theorem 3 presents a sufficient condition on
cascaded anticipating synchronization among systems (14).

Theorem 3. If there are positive definite matrices W > 0, Z > 0, Y > 0, matrices
M,N,P,Q,R, S and diagonal matrices κ, ε > 0, δ > 0 such that LMIs (8) and (9) hold,
then for any delay τ satisfying 0 < lτ � τ̄ , the master pendulum-like dynamical system (M)
and the slave ones (Si), i = 1, . . . , l, achieve cascaded anticipating synchronization.

Proof. Define the error signal e1(t) = x(t)− y1(t − τ) and ξ1(t) = σ(t)−σ1(t − τ); then the
dynamics of synchronization error between the master and slave systems can be represented
as {

ė1(t) = Ae1(t) + Ke1(t − τ) + Bη(ξ1, σ1),

ξ̇1(t) = CT e1(t) + Dη(ξ1, σ1).
(15)

Here, η(ξ1, σ1) = ϕ(ξ1(t) + σ1(t − τ)) − ϕ(σ1(t − τ)), and it is clear that (15) has the same
form as (7); hence, the criterion derived in theorem 1 ensures that systems (M) and (S1) could
achieve anticipating synchronization, namely x(t) = y1(t − τ) as t → ∞.

The result of anticipating synchronization between (M) and (S2) is obtained by
undertaking the investigation of the error signals e2(t) = x(t) − y2(t − 2τ), ξ2(t) =
σ(t) − σ2(t − 2τ) and error dynamics{
ė2(t) = Ae2(t) + Ke2(t − 2τ) + Bη(ξ2, σ2) + [�(σ1(t − 2τ)) − �(σ(t − τ))]
ξ̇2(t) = CT e2(t) + Dη(ξ2, σ2)

7
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sin( )

K s( )FiltG s

( )G s

Figure 1. A simplified version of the PLL model.

with η(ξ2, σ2) = ϕ(ξ2(t) + σ2(t − 2τ)) − ϕ(σ2(t − 2τ)). Given that anticipating
synchronization between (M) and (S1) has already taken place, we have �(σ1(t − 2τ)) −
�(σ1(t − 2τ) + δ1T ) = �(σ1(t − 2τ))−�(σ1(t − 2τ) + nδ1T�) = 0. Accordingly, we arrive
at the error dynamics{

ė2(t) = Ae2(t) + Ke2(t − 2τ) + Bη(ξ2, σ2),

ξ̇2(t) = CT e2(t) + Dη(ξ2, σ2).
(16)

It is obvious that the difference between the two error dynamics (15) and (16) merely embodies
in the doubled constant time delay. Based on the proof of theorem 1, (8) and (9) ensure
x(t) = y1(t − τ) = y2(t − 2τ) for any 0 < 2τ � τ̄ as t → ∞. By analogy, if the LMIs (8)
and (9) are feasible for the constant time delay lτ , then all of the l error dynamics would be
ensured to be asymptotically stable, which means that the master system (M) and the chain
of l pendulum-like dynamical systems (Si), i = 1, . . . , l, have achieved cascaded anticipating
synchronization. This completes the proof. �

Remark 5. Theorem 3 provides an effective criterion for the verification of cascaded
anticipating synchronization. It could be observed that under the circumstance of cascaded
anticipating synchronization, the anticipation times has increased. Also, the stability properties
of the associated anticipatory synchronization manifold turn out to be the same as for identically
synchronizing systems as shown in theorem 1.

4. Illustrative examples

The phase-locked loop (PLL) is a kind of concrete system studied in the theory of
communication [20, 28] whose dynamics is described by (3) after certain simplifications
[29]. In the same manner, a group of two interconnected PLLs could be treated as master–
slave-coupled pendulum-like systems. Many monographs have been devoted to the extremely
significant locking-in property for an arbitrary solution to an equilibrium point which is looked
upon as a synonym of the global asymptotical stability [30, 31]. The simplified model of the
PLL is shown in figure 1, and it will be shown how results derived in this paper can be used
to predict the dynamical behavior of such systems. The transfer function from the input sin(·)
to the output −φ is given by G(s) = 1

s
χ(s), where χ(s) is the transfer function from sin(·) to

the output −φ̇ and described by the state space model of the form

ẋ(t) = Ax(t) + Bϕ(ρ(t)) + �(ρ(t − τ)),

ρ̇(t) = Cx(t) + Dϕ(ρ(t)),
(17)

with the nonlinear function ϕ(ρ(t)) = sin(ρ(t)), and

A =
[

0.1 −0.4
1 −2

]
, B =

[−0.2
0

]
, C =

[
0.6
0.8

]
,
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D = −0.5,�(ρ(t − τ)) =
[

0.6 sin(0.5ρ(t − τ))

0

]
.

Such a system describes the dynamics of an autonomous phase-locked loop with a second-
order filter of type ‘2/2’ and a 2π input nonlinearity [20].

Example 1. The anticipating synchronization between two linearly coupled identical systems
(M) and (S) with parameters as (17) is to be examined in this example. Suppose the time-
delayed coupling term u(t) = K(y(t − τ) − x(t)) is added to the master system. To verify
our results, a suitable K is determined as K = diag(−0.14,−1.52) and the constant time
delay τ = 1. This representation results in m = 1, and clearly A has no eigenvalues on the
imaginary axis and (A,B) is controllable. In this case, the LMIs (8) and (9) are tested to be
feasible with

W = 103 ×
[

0.8368 −0.1586
−0.1586 1.1880

]
, k = 649.5551,

Y =
[

127.5612 −47.5088
−47.5088 480.1620

]
, e = 171.6160,

Z =
[

505.0932 −17.9090
−17.9090 404.1529

]
, d = 78.6019,

which implies that the master and slave systems (5) and (6) realize anticipating synchronization
according to theorem 1. Furthermore, we get the largest allowable upper bound of the
time delay τ ∗ = 1.7356, which guarantees that the master and slave systems will achieve
anticipating synchronization for any τ subject to 0 < τ � 1.7356.

This estimation could be further demonstrated through graphical illustrations. Simulation
results for the master–slave synchronization scheme with initial values [x(0), σ1(0)] =
[0.1 − 1.2 − 0.52] and [y(0), σ2(0)] = [−0.3 − 0.21 3] are given in figure 2, which shows
that the dynamics of the master system could be exactly predicted by the slave one. The insets
(right) in figure 1 are the zooms revealing the anticipation effect, while the prediction error
dynamics ei(t) = xi(t) − yi(t − τ), i = 1, 2, and ξ(t) = σ1(t) − σ2(t − τ) are depicted in the
insets (left), respectively, showing asymptotic convergence to zero as t → ∞.

Example 2. The cascaded anticipating synchronization is illustrated in this example.
Consider a master PLL system (M) and two slave ones (S1), (S2) that are connected
under the frame of (14). Suppose that the system parameters are the same as those in

example 1, except for the nonlinear term �(ρ(t − τ)) = [0.6 sin(2ρ(t − τ))

0

]
. In this regard,

T = 2T� = 2π , which satisfy the assumption imposed on (14). Pick the constant time delay
as τ = 0.5. Due to the feasibility of LMIs (8) and (9) with τ ∗ = 1.7356, the conditions
in theorem 3 hold for time delays τ = 0.5 and 2τ = 1, which guarantees that cascaded
anticipation could be achieved. For the purpose of demonstration, the simulation results
with initial values [x(0), σ (0)] = [0.1 − 1.2 − 0.52], [y1(0), σ1(0)] = [−0.3 − 0.21 3] and
[y2(0), σ2(0)] = [1.1 − 2.3 − 2.5] are given in figure 3, with error dynamics ei1(t), ei2(t)

and ξi(t), respectively, i = 1, 2, depicted in the corresponding insets. This illustrative
result coincides with theorem 3 and confirms the achievement of cascaded anticipating
synchronization.

5. Conclusion

In summary, we have considered the master–slave anticipating synchronization of two
pendulum-like dynamical systems by dealing with a time-delayed nonlinear system with

9
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Figure 2. Anticipating synchronous dynamics of (5) and (6): (a) x1(t) and y1(t), (b) x2(t) and
y2(t), (c) σ1(t) and σ2(t).
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Figure 3. Anticipating synchronous dynamics of (14): (a) x1(t) and yi1(t); (b) x2(t) and yi2(t);
(c) σ(t) and σi(t); i = 1, 2.
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multiple equilibria. A sufficient condition in the form of LMI was established to guarantee
the anticipating synchronization of such systems, which are applicable to predict states of
possibly chaotic or complex systems with time delay. The derived result was then extended
to that of cascaded anticipating synchronization among a number of slave pendulum-like
systems. Throughout this paper, the model is assumed to be exactly known, which is
rather difficult to achieve in a practical situation. Based on practical consideration, the
anticipating synchronization problem could be generalized to systems with model uncertainties
and perturbation, which will be the subject of a future study.
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Appendix. Proof of theorem 1

The following lemma will be of great help as a proof of theorem 1.

Lemma 1 [20]. Suppose that both α : R+ → R and β : R+ → R belong to L2[0, +∞); then
for t → +∞, we have the following statement:

γ (t) =
∫ t

0
α(t − τ)β(τ) dτ → 0.

Before moving on further, define a diagonal matrix ν = diag(ν1, ν2, . . . , νm) with

νk =
∫ Tk

0 ηk(ξk, σ2k) dη∫ Tk

0 |ηk(ξk, σ2k)| dη
, k = 1, 2, . . . , m, (A.1)

together with a function Fk(ξk) = ηk(ξk, σ2k) − νk|ηk(ξk, σ2k)|, which satisfies that∫ Tk

0 Fk(ξ) dξ = 0.

Proof of theorem 1. Construct a Lyapunov function candidate as

V (e, ξ) = eT We +
∫ 0

−τ

∫ t

t+b

ėT (a)Zė(a) da db +
∫ t

t−τ

eT (a)Y e(a) da +
m∑

k=1

κk

∫ ξk

0
Fk(y) dy.

It is known from the Newton–Leibniz formula [32] that

e(t − τ) = e(t) −
∫ t

t−τ

ė(a) da.

Denote e = e(t), eτ = e(t − τ) and η = η(ξ, σ2) for simplicity. For any matrix ϒ1 =
[MT NT ], ϒ2 = [P T QT RT ST ], it arrives at the following formulation:

�1 = [eT ėT ]ϒT
1 [ė − Ae − Keτ − Bη] = 0,

�2 = [eT eT
τ ηT ėT ]ϒT

2

[∫ t

t−τ

ė(a) da + eτ − e

]
= 0,

12
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where M,N,P,Q,R, S are matrices with appropriate dimensions. By incorporating the term
2�, the time derivative of V (e, ξ) along any trajectory of system (7) is derived as

V̇ (e, ξ) = 2eT Wė +
∫ 0

−τ

[ėT (t)Zė(t) − ėT (t + b)Zė(t + b)] db

+
1

τ

∫ t

t−τ

(
eT Y e − eT

τ Y eτ

)
da +

m∑
k=1

κkFk(ξk)ξ̇k + 2�1 + 2�2

= 2

τ

∫ t

t−τ

[
eT (W + ST )ė + eT P e + eT (−P + QT )eτ + eT (RT )η + eT

τ (−Q)eτ

+ eT
τ (−RT )η + ėT (−S)eτ + eT (−τP )ė(a) + eT

τ (−τQ)ė(a) + ηT (−τR)ė(a)

+ ėT (−τS)ė(a)
]

da + eT (Y − MA − AT MT )e +
1

τ

∫ t

t−τ

[ėT (t)τZė(t)

− ėT (a)τZė(a) da +
1

τ

∫ t

t−τ

[
2eT (M − AT NT )ė + 2eT (−MK)eτ + 2eT (−MB)η

+ 2ėT Nė + 2ėT (−NK)eτ + 2ėT (−NB)η − eT
τ Y eτ

]
da + 2ėT (−NA)e

+
m∑

k=1

[
εkξ̇

2
k + δkη

2
k(ξk, σ2k)

]
+

m∑
k=1

[
κkηk(ξk, σ2k)ξ̇k − κkνk|ηk(ξk, σ2k)|ξ̇k

− εkξ̇k
2 − δkη

2
k(ξk, σ2k)

]
.

Observe that condition (9) is equivalent to the existence of two positive numbers δ0k > 0
and ε0k > 0 such that

κkνk|ηk(ξk, σ2k)|ξ̇k + εkξ̇k
2

+ δkη
2
k(εk, σ2k) � ε0kξ̇

2
k + δ0kη

2
k(εk, σ2k);

then we arrive at

V̇ (θ, ξ) +
m∑

k=1

[
ε0kξ̇

2
k + δ0kη

2
k(εk, σ2k)

]
� V̇1(θ, ξ) + V̇2(θ, ξ) + V̇3(θ, ξ)

+
m∑

k=1

[
εkξ̇

2
k + κkηk(ξk, σ2k)ξ̇k + δkη

2
k(ξk, σ2k)

] = 1

τ

∫ t

t−τ

χ
χT da, (A.2)

where χ = [
eT eT

τ ηT ėT ėT (a)
]

and 
 is defined in (8). By integrating both sides of (A.2), it is
ensured by the LMIs (8) and (9) that

V (t) − V (0) � −
m∑

k=1

∫ t

0

[
ε0kξ̇

2
k + δ0kη

2
k(ξk, σ2k)

]
dt. (A.3)

Due to the stability of A, we know that solution e(t) of (7) is bounded [23], while the
boundedness of

∫ ξk

0 Fk(y) dy is ensured by the fact that Fk(ξk) have mean value zero. It
follows that V (e, ξ) is bounded. Together with (A.3), we get

(a)
∫ +∞

0 η2
k(ξk(t), σ2k(t)) dt < +∞,

(b)
∫ +∞

0 ξ̇ 2
k (t) dt < +∞,

(c)
∫ +∞

0 e2
k(t) dt < +∞, k = 1, 2, . . . , m.

It is known that if the solutions of (7) are bounded, then the nonlinear functions ηk(ξk, σ2k), k =
1, 2, . . . , m, are uniformly continuous on [0, +∞) [20]. Also, since ηi are periodic functions
and have a finite number of zeros on [0, Ti), we have

lim
t→+∞ ηk(ξk(t), σ2k(t)) = 0,

lim
t→+∞ ξk(t) = ξ̂k(t), k = 1, 2, . . . , m,

(A.4)
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with ηk(ξ̂k(t), σ2k(t)) = 0. Now let us consider a solution of the error dynamics e(t) =
eAte(0) +

∫ t

0 eA(t−s)Ke(s − τ) ds +
∫ t

0 eA(t−s)Bη(s) ds. It can be deduced from lemma 1 as
well as conditions (a) and (c) that limt→+∞ e−Ah

∫ t

0 eA(t−s)Be(s) ds = 0. Combining with the
Hurwitzian stability of matrix A, we have

lim
t→+∞ e(t) = 0. (A.5)

The validity of the second equality in (A.4) and (A.5) shows that every solution (e(t), ξ(t))

of system (7) converges to a certain equilibrium, which indicates that the error dynamics (7)
is globally asymptotically stable, namely the LMIs given in (8) and (9) could ensure that the
master system (M) and slave system (S) achieve anticipating synchronization. �
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